The Effect of Deinking Process on Bioethanol Production from Waste Banknote Paper

Author:

Aghmashhadi Omid Yazdani,Asadpour Ghasem,Garmaroody Esmaeil Rasooly,Zabihzadeh Majid,Rocha-Meneses LisandraORCID,Kikas TimoORCID

Abstract

The aim of this paper is to study the effect of reinking and pretreatment of waste banknote paper on its usability in the bioethanol production process. To this end, the tensile strength of worn banknote paper was first studied at different pH values. The sample with the lowest tensile strength was considered for the next sections. In the deinking process, NaOH at different concentrations (1%, 2%, 3%, and 4%) and in combination with ultrasonic treatment was applied. After deinking the pulp, two acidic and alkaline chemical pretreatments with concentrations of 1%, 2%, 3%, and 4% were used independently and in combination with ultrasonic. Enzymatic hydrolysis, following fermentation with Scheffersomyces stipitis, and crystallinity measurements were used to confirm the efficiency of the pretreatments. RSM Design Expert software was used to determine the optimal values by considering the three variables—enzyme loading, ultrasonic loading, and contact time for waste paper deinked (WPD) and waste paper blank (WPB) pulps. The results indicated that repulping was the most efficient at pH = 2. In deinking, the highest brightness was obtained using 3% NaOH in combination with ultrasonic. Between the acid and alkaline pretreatment, the acid treatment was more appropriate according to the resulting sugar concentration and weight loss. XRD tests confirmed that the lowest crystallinity index was obtained in the sample pretreated with 4% sulfuric acid in combination with ultrasonic. The highest sugar concentration in the enzymatic hydrolysis step was 92 g/L for WPD and 81 g/L for WPB. For the fermentation at 96 h, the highest ethanol concentration and process efficiency achieved were 38 g/L and 80.9% for WPD and 31 g/L and 75.04% for WPB, respectively. Our research shows that the deinking process can widen the utilization potential of waste banknote paper in biorefinery processes.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference42 articles.

1. Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives

2. Second Generation Bioethanol Production: On the Use of Pulp and Paper Industry Wastes as Feedstock

3. Waste paper—Promising feedstock for bioethanol production;Ioelovich;J. Sci. Res. Rep.,2014

4. The Impact of Paper Production on the Environment Paperlesshttps://www.efilecabinet.com/impact-of-paper-production-environment-paperless-office

5. Prospects for Maintaining Strength of Paper and Paperboard Products While Using Less Forest Resources: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3