Improving Ammonium Sorption of Bayah Natural Zeolites by Hydrothermal Method

Author:

Kurniawan TeguhORCID,Bahri Saiful,Diyanah Anita,Milenia Natasya D.,Nuryoto Nuryoto,Faungnawakij KajornsakORCID,Thongratkaew Sutarat,Roil Bilad MuhammadORCID,Huda NurulORCID

Abstract

Natural zeolites are easily found and abundant in Indonesia. The natural zeolites are low-cost minerals; however, their ammonium sorption is poor. A hydrothermal method was applied to improve the ammonium sorption. Hydrothermal treatment times were varied 8, 24, and 32 h. The parent and hydrothermal treated samples were characterized by using X-ray diffraction (XRD), Field Emission Scanning Electron Microscopes (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), and nitrogen physisorption. Ammonium adsorption was performed using a batch reactor to evaluate the adsorption performance of the prepared zeolite samples. The 8 h hydrothermal (HT 8 h) treated zeolites showed the highest ammonium removal percentage among others. The XRD analysis of HT 8 h shows a higher crystallinity of mordenite and the Brunauer–Emmett–Teller (BET) model shows a surface area of 105 m2/g, much larger as compared to the parent with a surface area of 19 m2/g. Various kinetic and isotherms models were also studied on the parent and HT 8 h samples. The intraparticle equation showed the most accurate model for the kinetic data and the Freundlich equation showed the most accurate model for the isotherm of the experimental data. In terms of ammonium removal efficiency, hydrothermally treated Bayah mordenite compares favorably with treated mordenite from other locations despite that clinoptilolite provides higher removal capacities than mordenite.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3