Fu Loose Tea Administration Ameliorates Obesity in High-Fat Diet-Fed C57BL/6J Mice: A Comparison with Fu Brick Tea and Orlistat

Author:

Liang Yan12,Wu Fanhua1,Wu Daying3,Zhu Xiaofang24,Gao Xin3,Hu Xin24,Xu Fangrui1,Ma Tianchen1,Zhao Haoan1ORCID,Cao Wei1

Affiliation:

1. College of Food Science and Technology, Northwest University, Xi’an 710069, China

2. Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China

3. Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China

4. Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China

Abstract

Fu tea is receiving increasing attention for its specific aroma, flavor, and dramatic functional benefits. Herein, we explored the effects and underlying mechanisms of Fu loose tea (FLT), Fu brick tea (FBT), and diet pills (orlistat) on a high-fat diet (HFD)-induced obesity. The results indicated that FLT and FBT administration effectively inhibited weight gain, glucose metabolic dysregulation, fat accumulation in organs, hepatic and kidney injury, and oxidative stress induced by HFD. Additionally, FLT and FBT treatments improved the lipid profiles and reduced the production of proinflammatory cytokines by regulating the expression levels of lipid metabolism- and inflammation-related genes. Furthermore, FLT and FBT ameliorated the gut microbiota dysbiosis in HFD-mice in a dose-dependent relationship by increasing the abundance of family Verrucomicrobiaceae and genus Akkermansia and Turicibacter and simultaneously reducing the abundance of family Erysipelotrichaceae and genus Bifidobacterium; in contrast, orlistat did not exert a regulatory effect on gut microbiota similar to FLT and FBT to improve HFD-induced obesity. KEGG analysis of gut microbiota annotation revealed that “metabolism” was the most enriched category. This study further provides a theoretical basis for FLT and FBT to be potential supplements to alleviate diet-induced obesity.

Funder

Shaanxi Key R&D Project

Xianyang Key R&D Project

Shaanxi Key R&D Planning Project

Taishan Scholars Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3