Oyster Peptide-Zinc Complex Ameliorates Di-(2-ethylhexyl) Phthalate-Induced Testis Injury in Male Mice and Improving Gut Microbiota

Author:

Lu Zhen12,Huang Qianqian1,Chen Fujia2,Li Enzhong2,Lin Haisheng13ORCID,Qin Xiaoming13

Affiliation:

1. Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China

2. School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China

3. National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China

Abstract

Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer, which can cause damage to male reproductive organs, especially the atrophy of the testis. Meanwhile, DEHP can also lead to a decrease in testicular zinc content, but the role of zinc remains unclear. This study aims to prepare oyster peptide-zinc complex (OPZC) to alleviate DEHP-induced reproductive damage in mice. OPZC was successfully obtained through electron microscopy, X-ray diffraction, and thermogravimetric analysis, with stable structure and high water-solubility. Low dose oyster peptide-zinc complex (OPZCL) significantly reduced the reproductive damage caused by DEHP in mice. Further research had shown that OPZCL restored the content of serum hormones and the activity of oxidative stress kinases to normal, while also normalizing testicular zinc and selenium levels. In addition, it also recovered the disorder of gut microbiota, reduced the proportion of Bacteroides, increased the abundance of Ligilactobacillus, and restored the proportion of Acidobacteriota, Chloroflexi, and Proteobacteria. Therefore, OPZCL can relieve the reproductive damage caused by DEHP in mice by restoring testicular zinc homeostasis and the composition of intestinal microbiota, indicating that OPZCL has a potential protective effect on male reproductive health.

Funder

Earmarked Fund for China Agriculture Research System

Research on Processing and Utilization Technology of Subtropical Fruits and Vegetables

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3