Effects of Edible Organic Acid Soaking on Color, Protein Physicochemical, and Digestion Characteristics of Ready-to-Eat Shrimp upon Processing and Sterilization

Author:

Guo Chao1,Fan Yingchen1,Wu Zixuan1,Li Deyang1,Liu Yuxin1,Zhou Dayong1

Affiliation:

1. State Key Laboratory of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China

Abstract

Soft-packed ready-to-eat (RTE) shrimp has gradually become popular with consumers due to its portability and deliciousness. However, the browning caused by high-temperature sterilization is a non-negligible disadvantage affecting sensory quality. RTE shrimp is processed through “boiling + vacuum soft packing + high temperature and pressure sterilization”. Ultraviolet-visible (UV) spectroscopy with CIELAB color measurement showed that phytic acid (PA) + lactic acid (LA), PA + citric acid (CA), and PA + LA + CA soaking before cooking alleviated browning, as well as UVabsorbance and the browning index (BI). Meanwhile, UV spectroscopy and fluorescence spectroscopy showed that organic acid soaking reduced the content of carbonyl, dityrosine, disulfide bonds, surface hydrophobicity, and protein solubility, but promoted the content of free sulfhydryl and protein aggregation. However, in vitro digestion simulations showed that organic acid soaking unexpectedly inhibited the degree of hydrolysis and protein digestibility. This study provides the basis for the application of organic acids as color protectors for RTE aquatic muscle product.

Funder

The National Natural Science Foundation of China

National Key R&D Program of China

Dalian Science and Technology Innovation Fund Project

Central Funds Guiding the Local Science and Technology Development

Marine Economic Development Project of Liaoning Province

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3