Conversion of Retinyl Palmitate to Retinol by Wheat Bran Endogenous Lipase Reduces Vitamin A Stability

Author:

Van Wayenbergh Eline1ORCID,Blockx Jonas2ORCID,Langenaeken Niels A.1,Foubert Imogen2ORCID,Courtin Christophe M.1ORCID

Affiliation:

1. Laboratory of Food Chemistry and Biochemistry & Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium

2. Research Unit of Food and Lipids & Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven KULAK, Etienne Sabbelaan 53, B-8500 Kortrijk, Belgium

Abstract

Wheat bran can be used as a cost-effective food ingredient to stabilise vitamin A. However, wheat bran endogenous enzymes have been shown to reduce vitamin A stability. In this study, we elucidated the mechanism for this negative effect in an accelerated storage experiment with model systems consisting of native or toasted wheat bran, soy oil and retinyl palmitate (RP). Both native and toasted wheat bran substantially stabilised RP. While RP was entirely degraded after ten days of storage in the absence of wheat bran, the RP retention after ten days was 22 ± 2% and 75 ± 5% in the presence of native and toasted bran, respectively. The significantly stronger stabilising effect of toasted bran was attributed to the absence of bran endogenous enzymes. In contrast to toasted bran systems, noticeable free fatty acid production was observed for native bran systems. However, this did not result in a pronounced lipid oxidation. Next to lipid hydrolysis, wheat bran lipase was shown to hydrolyse retinyl esters to the less stable retinol and fatty acids. This reaction could explain the major part, about 66 ± 5%, of the difference in RP stabilisation between native and toasted wheat bran.

Funder

Research Foundation Flanders

Internal Funds KU Leuven

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3