Quality Characteristics and Storage Stability of Frying Steak Utilizing Wax-Based Korean Pine Seed Oil

Author:

Wang Peng1ORCID,Wang Jingyi1,Fan Yue1,Zhang Na2,Guo Qingqi1

Affiliation:

1. College of Life Science, Northeast Forestry University, Harbin 150040, China

2. College of Food Engineering, Harbin University of Commerce, Harbin 150028, China

Abstract

To investigate the disparities in product quality and storage stability between wax-based Korean pine seed oil gel and butter when used for frying steak, a comparative analysis was conducted on cooking loss, color, texture characteristics, sensory evaluation, and volatile flavor substances using headspace solid phase microextraction combined with GM-MS. Furthermore, the storage stability was assessed. The findings revealed that the cooking loss rate of steaks significantly increased with doneness, with butter steak exhibiting a significantly higher loss rate compared to the three oil gel steaks. Hardness, chewiness, and adhesiveness greatly increased as doneness progressed; however, cohesiveness, elasticity, and resilience showed minimal variation. The L* value and b* value of steaks initially increased before stabilizing with increasing doneness levels while the a* value first rose before gradually declining. Medium rare steak received the highest sensory score among all categories tested and 69 volatile flavor compounds were detected. Multivariate data analysis indicated similarities in volatile compounds between butter steak and BW (wax-based Korean pine seed oil gel) steak groups. Additionally, during storage at 4 °C temperature conditions pH level retention water content TVB-N (total volatile basic nitrogen), TBARS (thiobarbituric acid reactive substances) were evaluated to determine advantages or disadvantages within each group: Beeswax (BW) > Carnauba wax (CW) > Rice bran wax (RBW) > butter based on these parameters’ values. It can be concluded that utilizing wax-based Korean pine seed oil gel for frying steaks not only effectively retains significant amounts of unsaturated fatty acids but also preserves steak quality while extending shelf life—a healthier cooking method resulting in reduced oil absorption.

Funder

Heilongjiang Provincial Key R&D Program Guidance Category Project

National Natural Science Foundation of China

Regional Innovation Project of Heilongjiang Provincial Department of Education

Special Project for Centralized Guidance of Local Science and Technology Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3