Physicochemical, Quality and Flavor Characteristics of Starch Noodles with Auricularia cornea var. Li. Powder

Author:

Gao Yang1,Zhang Xinzhen1,Wang Ran1,Sun Yue1,Li Xueling1,Liang Jin1ORCID

Affiliation:

1. Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei 230036, China

Abstract

Auricularia cornea var. Li., as an edible mushroom rich in various nutrients, could be widely used in noodle food. This study aimed to investigate the effect of Auricularia cornea var. Li. (AU) powder on the gel properties, structure and quality of starch noodles. Taking the sample without adding AU powder as a control, the addition of AU powder enhanced the peak viscosity, trough viscosity, final viscosity, breakdown, setback, peak time, gelatinization temperature, G′ (storage modulus) and G′′ (loss modulus). Meanwhile, the incorporation of AU powder significantly enhanced the stability of the starch gel structure and contributed to a more ordered microstructure also promoting the short-term aging of starch paste. In vitro digestion results displayed lower rapid digestibility (21.68%) but higher resistant starch content (26.58%) with the addition of AU powder and increased breaking rate, cooking loss, swelling index and a* and b* values. However, it decreased dry matter content and L*, particularly the reducing sugar content significantly increased to 4.01% (p < 0.05), and the total amino acid content rose to 349.91 mg/g. The GC-IMS library identified 51 VOCs, and the OPLS-DA model classified 18 VOCs (VIP > 1). Overall, the findings indicate that starch noodles with the addition of AU powder may provide greater nutritional quality, gel stability and starch antidigestibility.

Funder

Anhui Provincial Department of Education

Anhui Natural Science Foundation

Anhui Provincial Key Research and Development Program

Anhui Provincial Central Government Guided Local Science and Technology Development Project

Fuyang City School Cooperation Science and Technology Special Project

Anhui Province Graduate Education and Teaching Reform Research Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3