Diversity of ‘Cabernet Sauvignon’ Grape Epidermis and Environmental Bacteria in Wineries from Different Sub-Regions of the Eastern Foothills of Helan Mountain, Ningxia

Author:

Yang Hui12ORCID,Wang Zheng3ORCID,Zhang Zhong1ORCID,Shu Chao3,Zhu Jiaqi3,Li Ying3,Zhang Junxiang134

Affiliation:

1. School of Life Sciences, Ningxia University, Yinchuan 750021, China

2. Institute of Medical Sciences, Ningxia Medical University, Yinchuan 750004, China

3. School of Wine & Horticulture, Ningxia University, Yinchuan 750021, China

4. Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, China

Abstract

Understanding the composition of the bacterial community on the epidermis of wine grapes and in winery environments, as well as the response of grape epidermal bacteria to climatic factors, plays a significant role in ensuring grape health and promoting grape conversion into wine. This study utilized high-throughput sequencing to explore the composition of the bacterial community on the wine grape epidermis and representative wineries of three sub-regions of the Eastern Foothills of Helan Mountain, Ningxia. The results showed that the bacterial diversity and richness in the Yongning (YN) sub-region were the highest, with Qingtongxia (QTX) having the lowest levels of grape epidermal bacteria. The bacterial diversity and richness were the highest in Yinchuan (YC) and the lowest in YN in the winery environment (p < 0.05). The composition of dominant bacteria on the grape epidermis and in winery environments of the three sub-regions was not different at the phylum and genus level, but the levels of these dominant bacteria were different among the sub-regions. There was a correlation between grape epidermal bacteria and climatic factors. Approximately 93% of the bacterial genera on the grape epidermal genera in the three sub-regions are present in the winery environment and contain all the dominant bacterial genera on the epidermis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3