Enhancing Stability and Antioxidant Activity of Resveratrol-Loaded Emulsions by Ovalbumin–Dextran Conjugates

Author:

Zhang Wen1ORCID,Meng Lingli1,Lv Xinyi1,Wang Limin1,Zhao Pei1,Wang Jinrong1,Zhang Xinping1ORCID,Chen Jinyu1,Wu Zijian1ORCID

Affiliation:

1. Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China

Abstract

A reliable strategy for improving the stability and shelf life of protein-stabilized systems is by covalently attaching the protein onto a polysaccharide. In this study, ovalbumin (OVA) was modified with dextran (DEX) of different molecular weights by the Maillard reaction, and was used to enhance the stability of emulsions loaded with resveratrol. The surface hydrophobicity, thermal stability, and FT-IR spectroscopy of the OVA–DEX conjugates were evaluated. The results showed that the surface hydrophobicity of OVA decreased, while the thermal stability of OVA was significantly improved after DEX covalent modification. The OVA–DEX1k-stabilized emulsion exhibited high encapsulation efficiency of resveratrol, with the value of 89.0%. In addition, OVA–DEX was considerably more effective in droplet stabilization against different environmental stresses (heat, pH, and ionic strength). After 28 days of storage at 25 °C, the OVA-stabilized emulsion showed faster decomposition of resveratrol, whereas the OVA–DEX-conjugate-stabilized emulsion had approximately 73% retention of resveratrol. Moreover, the antioxidant activity of resveratrol-loaded emulsions stabilized by OVA–DEX was higher during storage under different temperatures. These results proved that the OVA–DEX conjugates had the potential to form stable, food-grade emulsion-based delivery systems against environmental stresses, which strongly supports their potential in the field of food and biomedical applications.

Funder

Tianjin Higher School Science and Technology Development Fund

Tianjin Natural Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3