Comparative Study on the Impact of Different Extraction Technologies on Structural Characteristics, Physicochemical Properties, and Biological Activities of Polysaccharides from Seedless Chestnut Rose (Rosa sterilis) Fruit

Author:

Chen Kaiwen12,Zhang Qiuqiu1,Yang Shengzhen1,Zhang Shengyan1,Chen Guangjing1ORCID

Affiliation:

1. College of Food Science and Engineering, Guiyang University, 130 Jianlongdong Road, Nanming District, Guiyang 550005, China

2. College of Life Sciences, South China Agricultural University, Guangzhou 510642, China

Abstract

Seedless chestnut rose (Rosa sterilis S. D. Shi, RS) is a fresh type of R. roxburghii Tratt with copious functional components in its fruit. Polysaccharides are recognized as one of the vital bioactive compounds in RS fruits, but their antioxidant and hypoglycemic properties have not been extensively explored. Hence, in this study, accelerated solvent extraction (RSP-W), citric acid (RSP-C), 5% sodium hydroxide/0.05% sodium borohydride (RSP-A), and 0.9% sodium chloride (RSP-S) solution extraction were individually utilized to obtain RS fruit polysaccharides. The physicochemical properties, structural characteristics, and biological activities were then compared. Results indicated that extraction methods had significant influences on the extraction yield, uronic acid content, monosaccharide composition, molecular weight, particle size, thermal stability, triple-helical structure, and surface morphology of RSPs apart from the major linkage bands and crystalline characteristics. The bioactivity tests showed that the RSP-S, which had the greatest amount of uronic acid and a comparatively lower molecular weight, exhibited more potent antioxidant and α-glucosidase inhibitory property. Furthermore, all RSPs inhibited α-glucosidase through a mixed-type manner and quenched their fluorescence predominantly via a static quenching mechanism, with RSP-S showing the highest binding efficiency. Our findings provide a theoretical basis for utilizing RSPs as functional ingredients in food industries.

Funder

Guizhou Provincial Natural Science Foundation

Guiyang science and technology bureau and Guiyang University

College Students’ innovation and entrepreneurship training program of Guizhou Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3