Affiliation:
1. Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
2. International Joint Research Laboratory of Intelligent Agriculture and Agro-Products Processing, Jiangsu Education Department, Zhenjiang 212013, China
Abstract
The food industry holds immense promise for 3D printing technology. Current research focuses mainly on optimizing food material composition, molding characteristics, and printing parameters. However, there is a notable lack of comprehensive studies on the shape changes of food products, especially in modeling and simulating deformations. This study addresses this gap by conducting a detailed simulation of the starch gel printing and deformation process using COMSOL Multiphysics 6.2 software. Additive manufacturing (AM) technology is widely acclaimed for its user-friendly operation and cost-effectiveness. The 3D printing process may lead to changes in part dimensions and mechanical properties, attributable to the accumulation of residual stresses. Studies require a significant amount of time and effort to discover the optimal composition of the printed material and the most effective deformed 3D structure. There is a risk of failure, which can lead to wasted resources and research delays. To tackle this issue, this study thoroughly analyzes the physical properties of the gel material through COMSOL Multiphysics 6.2 software, It simulates the heat distribution during the 3D printing process, providing important insights into how materials melt and solidify. Three-part models with varying aspect ratios were meticulously designed to explore shape changes during both the printing process and exposure to an 80 °C environment, employing NMR and rheological characterization. Using the generalized Maxwell model for material simulation in COMSOL Multiphysics, the study predicted stress and deformation of the parts by analyzing solid heat transfer and solid mechanics physical fields. Simulation results showed that among three models utilizing a gel-PET plastic membrane bilayer structure, Model No. 1, with the largest aspect ratio, exhibited the most favorable deformation under an 80 °C baking environment. It displayed uniform bending in the transverse direction without significant excess warpage in the edge direction. In contrast, Models No. 2 and No. 3 showed varying degrees of excess warpage at the edges, with Model No. 3 exhibiting a more pronounced warpage. These findings closely aligned with the actual printing outcomes.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Natural Science Foundation of Jiangsu Province
Foundation of Jiangsu Specially-Appointed Professor
Priority Academic Program Development of Jiangsu Higher Education Institutions
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献