Enzymatic Hydrolysis of Water Lentil (Duckweed): An Emerging Source of Proteins for the Production of Antihypertensive Fractions

Author:

Bernier Marie-Ève1,Thibodeau Jacinthe1,Bazinet Laurent1ORCID

Affiliation:

1. Department of Food Sciences, Laboratoire de Transformation Alimentaire et Procédés ÉlectroMembranaires (LTAPEM, Laboratory of Food Processing and ElectroMembrane Processes), Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada

Abstract

Water lentil (Duckweed), an emerging protein source, is a small floating aquatic plant with agronomic and compositional characteristics rendering it a potential source of bioactive peptides. However, enzymatic hydrolysis of duckweeds has only been carried out to assess the antioxidant and antimicrobial activities of the hydrolysates. The main objectives of this study were to perform enzymatic hydrolysis of duckweed powder utilizing several enzymes and to evaluate the final antihypertensive activity of the fractions. Duckweed powder was efficiently hydrolyzed by pepsin, chymotrypsin, papain and trypsin, with degree of hydrolysis ranging from 3% to 9%, even without prior extraction and concentration of proteins. A total of 485 peptide sequences were identified in the hydrolysates and only 51 were common to two or three hydrolysates. It appeared that phenolic compounds were released through enzymatic hydrolyses and primarily found in the supernatants after centrifugation at concentrations up to 11 mg gallic acid/g sample. The chymotryptic final hydrolysate, the chymotryptic supernatant and the papain supernatant increased the ACE inhibitory activity by more than 6- to 8-folds, resulting in IC50 values ranging between 0.55 to 0.70 mg peptides/mL. Depending on the fraction, the ACE-inhibition was attributed to either bioactive peptides, phenolic compounds or a synergistic effect of both. To the best of our knowledge, this was the first study to investigate the enzymatic hydrolysis of duckweed proteins to produce bioactive peptides with therapeutic applications in mind.

Funder

NSERC, Alliance Grant: “Integrated valorization of coproducts by ecoefficient food technologies in the context of a circular economy (Consortium VITALE)”

Fonds de recherche du Québec -Nature et technologies

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3