The Preparation and Characterization of Quinoa Protein Gels and Application in Eggless Bread

Author:

Xu Qianqian123,Zhang Xinxia1245,Zuo Zhongyu123,Zhang Ming123,Li Ting1245,Wang Li1245

Affiliation:

1. National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

2. Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

3. School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

4. Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

5. State Key Laboratory of Food Science and Resources, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

Abstract

The properties of xanthan gum protein gels composed of quinoa protein (XG-QPG) and ultrasound-treated quinoa protein (XG-UQPG) were compared for the preparation of high-quality quinoa protein gels. The gel qualities at different pH values were compared. The gels were used to produce eggless bread. Microscopically, the secondary structure of the proteins in XG-QPG (pH 7.0) was mainly α-helix, followed by random coiling. In contrast, the content of β-sheet in XG-UQPG was higher, relative to the viscoelastic properties of the gel. Moreover, the free sulfhydryl groups and disulfide bonds of XG-QPG (pH 7.0) were 48.30 and 38.17 µmol/g, while XG-UQPG (pH 7.0) was 31.95 and 61.58 µmol/g, respectively. A high disulfide bond content was related to the formation of gel networks. From a macroscopic perspective, XG-QPG (pH 7.0) exhibited different pore sizes, XG-UQPG (pH 7.0) displayed a loose structure with uniform pores, and XG-UQPG (pH 4.5) exhibited a dense structure with small pores. These findings suggest that ultrasound can promote the formation of a gel by XG-UQPG (pH 7.0) that has a loose structure and high water-holding capacity and that XG-UQPG (pH 4.5) forms a gel with a dense structure and pronounced hardness. Furthermore, the addition of the disulfide bond-rich XG-UQPG (pH 7.0) to bread promoted the formation of gel networks, resulting in elastic, soft bread. In contrast, XG-UQPG (pH 4.5) resulted in firm bread. These findings broaden the applications of quinoa in food and provide a good egg substitute for quinoa protein gels.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Key R&D Program of China

Key R&D Program of Jiangsu Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3