Elemental Fingerprinting Combined with Machine Learning Techniques as a Powerful Tool for Geographical Discrimination of Honeys from Nearby Regions

Author:

Mara Andrea1ORCID,Migliorini Matteo2ORCID,Ciulu Marco2ORCID,Chignola Roberto2ORCID,Egido Carla3,Núñez Oscar345ORCID,Sentellas Sònia345ORCID,Saurina Javier34ORCID,Caredda Marco6ORCID,Deroma Mario A.7,Deidda Sara1,Langasco Ilaria1ORCID,Pilo Maria I.1ORCID,Spano Nadia1ORCID,Sanna Gavino1ORCID

Affiliation:

1. Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy

2. Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy

3. Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain

4. Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, 08921 Barcelona, Spain

5. Serra Húnter Fellow, Departament de Recerca i Universitats, Generalitat de Catalunya, Via Laietana 2, 08003 Barcelona, Spain

6. Department of Animal Science, AGRIS Sardegna, Loc. Bonassai, 07100 Sassari, Italy

7. Department of Agriculture, University of Sassari, Viale Italia, 39A, 07100 Sassari, Italy

Abstract

Discrimination of honey based on geographical origin is a common fraudulent practice and is one of the most investigated topics in honey authentication. This research aims to discriminate honeys according to their geographical origin by combining elemental fingerprinting with machine-learning techniques. In particular, the main objective of this study is to distinguish the origin of unifloral and multifloral honeys produced in neighboring regions, such as Sardinia (Italy) and Spain. The elemental compositions of 247 honeys were determined using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The origins of honey were differentiated using Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Random Forest (RF). Compared to LDA, RF demonstrated greater stability and better classification performance. The best classification was based on geographical origin, achieving 90% accuracy using Na, Mg, Mn, Sr, Zn, Ce, Nd, Eu, and Tb as predictors.

Funder

PNRR research fellowship

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3