The Quality Evaluation of Highland Barley and Its Suitability for Chinese Traditional Tsampa Processing

Author:

Xia Hu1,Yu Bo1,Yang Yanting1,Wan Yan1,Zou Liang1,Peng Lianxin1,Lu Lidan1,Ren Yuanhang1

Affiliation:

1. Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering and Technology Research Center of Coarse Cereal Industralization, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

Abstract

The physicochemical traits of highland barley prominently affect the quality of Tsampa. To find out the relevance between the physicochemical properties of raw material and the texture parameters of processed products, twenty-five physicochemical traits and ten quality parameters for seventy-six varieties of highland barley were measured and analyzed. The results showed that there was a significant difference between the physicochemical indexes for highland barleys of various colors. The dark highland barley generally has more fat, protein, total dietary fiber, phenolic, Mg, K, Ca, and Zn and less amylose, Fe, Cu, and Mo than light colored barley. Then, these highland barleys were made into Tsampa. A comprehensive quality evaluation model based on the color and texture parameters of Tsampa was established through principal component analysis. Then, cluster analysis was used to classify the tested samples into three edible quality grades predicated on the above evaluation model. At last, the regression analysis was applied to establish a Tsampa quality predictive model according to the physicochemical traits of the raw material. The results showed that amylose, protein, β-Glucan, and a* and b* could be used to predict the comprehensive quality of Tsampa. The predicted results indicated that 11 of 14 validated samples were consistent with the actual quality, and the accuracy was above 78.57%. Our study built the approach of the appropriate processing varieties evaluation. It may provide reference for processing specific highland barley.

Funder

Sichuan Key Research and Development Program

Ganzi Science and Technology Program

Aba Applied Technology Research and Development Program

Publisher

MDPI AG

Reference39 articles.

1. Song, F. (2020). Research on Highland Barley-Made Zanba and Its Cultural Meanings. [Ph.D. Dissertation, Southwest University for Nationalities].

2. Highland barley starch (Qingke): Structures, properties, modifications, and applications;Obadi;Int. J. Biol. Macromol.,2021

3. Origin and evolution of qingke barley in Tibet;Zeng;Nat. Commun.,2018

4. Bioactive compounds of highland barley and their health benefits;Li;J. Cereal Sci.,2022

5. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing;Wang;LWT—Food Sci. Technol.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3