Citrus Peel Extracts: Effective Inhibitors of Heterocyclic Amines and Advanced Glycation End Products in Grilled Pork Meat Patties

Author:

Xu Yang1,Li Guangyu1,Mo Lan1,Li Maiquan1ORCID,Luo Jie1ORCID,Shen Qingwu1,Quan Wei12ORCID

Affiliation:

1. College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China

2. State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China

Abstract

In the present study, citrus peels were extracted using various conventional and deep eutectic solvents (DESs). Compared to other citrus peel extracts, the DES extract based on choline chloride showed notably higher total phenolic and flavonoid content levels, along with superior antioxidant activity, among these extracts. Consequently, this study aimed to further investigate the inhibitory effects of the choline chloride based DES extract on the production of both free and bound heterocyclic amines (HAs) and advanced glycation end products (AGEs) in roast pork meat patties. The results indicated that the addition of choline chloride-based DES extracts, particularly the choline chloride-carbamide based DES extract, can effectively reduce the oxidation of lipids and proteins by quenching free radicals. This approach proves to be the most efficient in reducing the formation of both HAs and AGEs, leading to a significant reduction of 19.1–68.3% and 11.5–66.5% in free and protein-bound HAs, respectively. Moreover, the levels of free and protein-bound AGEs were reduced by 50.8–50.8% and 30.5–39.8%, respectively, compared to the control group. Furthermore, the major phenolics of citrus peel extract identified by UHPLC-MS were polymethoxylated flavonoids (PMFs) including hesperidin, isosinensetin, sinensetin, tetramethoxyflavone, tangeretin, and hexamethoxyflavone, which inferring that these compounds may be the main active ingredients responsible for the antioxidant activity and inhibition effects on the formation of HAs and AGEs. Further research is needed to explore the inhibitory effects and mechanisms of PMFs with different chemical structures on the formation of HAs and AGEs.

Funder

National Natural Science Foundation of China

Hunan Provincial Natural Science Foundation of China

Changsha Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3