Multi-Spectral Food Classification and Caloric Estimation Using Predicted Images

Author:

Lee Ki-Seung1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea

Abstract

In nutrition science, methods that accomplish continuous recognition of ingested foods with minimal user intervention have great utility. Our recent study showed that using images taken at a variety of wavelengths, including ultraviolet (UV) and near-infrared (NIR) bands, improves the accuracy of food classification and caloric estimation. With this approach, however, analysis time increases as the number of wavelengths increases, and there are practical implementation issues associated with a large number of light sources. To alleviate these problems, we proposed a method that used only standard red-green-blue (RGB) images to achieve performance that approximates the use of multi-wavelength images. This method used RGB images to predict the images at each wavelength (including UV and NIR bands), instead of using the images actually acquired with a camera. Deep neural networks (DNN) were used to predict the images at each wavelength from the RGB images. To validate the effectiveness of the proposed method, feasibility tests were carried out on 101 foods. The experimental results showed maximum recognition rates of 99.45 and 98.24% using the actual and predicted images, respectively. Those rates were significantly higher than using only the RGB images, which returned a recognition rate of only 86.3%. For caloric estimation, the minimum values for mean absolute percentage error (MAPE) were 11.67 and 12.13 when using the actual and predicted images, respectively. These results confirmed that the use of RGB images alone achieves performance that is similar to multi-wavelength imaging techniques.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3