Characteristic Analysis of Electromagnetic Force in an HTS Field Coil Using a Performance Evaluation System

Author:

Go Byeong-Soo1

Affiliation:

1. Department of Electrical Engineering, Changwon National University, Changwon 51140, Republic of Korea

Abstract

A performance evaluation system (PES) can experimentally test the structural stability and magnetic field effects of HTS coils against high magnetic fields and electromagnetic forces before mounting the HTS coils on a large-capacity rotating machine. This paper deals with the characteristic analysis of electromagnetic force in an HTS field coil for a 10 MW Class HTS Wind Power Generator using PES. Based on the designed 10 MW class HTS wind power generator, the HTS coils are manufactured and installed in the PES by a support structure, which is designed considering the electromagnetic force (torque) and heat loads in the HTS coil. To check the stress and deformation in the support structure caused by the electromagnetic force generated from the coil, strain gauge sensors were attached to the support structure and measured under full-load conditions. As a result, the maximum magnetic field and electromagnetic force are 2.8 T and 71 kN, respectively. Compared to the analysis results, the magnetic field and generated electromagnetic force in the HTS coil were the same under no-load and full-load conditions. These results will be effectively used to study and fabricate high magnetic field coils for HTS applications, as well as the PES being fabricated.

Funder

Korean government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3