Deep Learning-Based Intelligent Detection Device for Insulation Pull Rod Defects

Author:

Yu Hua1,Niu Shu1,Li Shuai1,Yang Gang1,Wang Xuan1,Luo Hanhua2,Fan Xianhao2ORCID,Li Chuanyang2

Affiliation:

1. State Grid Shanxi Electric Power Research Institute, Taiyuan 030001, China

2. Department of Electrical Engineering, Tsinghua University, Beijing 100084, China

Abstract

This paper proposes a deep learning-based intelligent detection device for insulation pull rod defects, addressing the issues of low detection accuracy, poor timeliness of intelligent analysis, and the difficulty in preserving detection results. Firstly, by constructing the pull rod defects dataset and training the YOLOv5s network, along with commonly used object detection algorithms in industrial defect detection, the feasibility of deep learning networks for insulation pull rod defects detection is explored. Secondly, the trained model is combined to build an intelligent detection device for pull rod defects, integrating insulation pull rod image acquisition and defect detection into a unified system. The research results demonstrate that the YOLOv5s network can quickly and accurately detect pull rod defects. On the test set constructed in this paper, the detection performance metric mAP@0.5:0.95 of the trained model reached 54.7%. Specifically, the mAP@0.5 score was 86.9% at a threshold of 0.5. The detection speed FPS reached 169.5, significantly improving the detection efficiency and accuracy compared to traditional object detection algorithms. By establishing an organic connection between the image hardware acquisition device and the deep learning network, the existing problems of inefficient detection and difficult storage of detection results in pull rod defects detection methods are effectively addressed. This research provides new insights for detecting insulation pull rod defects.

Funder

State Grid Corporation Headquarters Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3