Genetic Optimization of Twin-Web Turbine Disc Cavities in Aeroengines

Author:

Guo Yueteng1,Wang Suofang1,Shen Wenjie1ORCID

Affiliation:

1. College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Abstract

Twin-web turbine discs have been the subject of research recently in an effort to lighten weight and boost aeroengine efficiency. In the past, the cooling design of turbine discs was generally constrained to optimizing a single structural parameter, which hindered the enhancement of the optimization impact. Therefore, this article proposes a twin-web turbine disc system with a high radius pre-swirl. Driven by the database produced through the numerical simulation, a backpropagation network surrogate model is constructed, and the angles of the pre-swirl nozzles and receiver holes are optimized by a genetic algorithm to enhance the cooling efficiency of the turbine disc. Evaluation was based on the highest disc temperature, disc temperature uniformity, and Nusselt number. The results demonstrate that the suggested surrogate model effectively optimizes the structural characteristics of the twin-web turbine disc by aiming for the specified cooling performance indexes. The cooling effect of the turbine disc is significantly improved in different operating environments. Specifically, the optimized model produces the largest temperature drop in the disc rim temperature. Both axial and radial temperature uniformity have led to a notable enhancement. The alteration in coolant flow within the cavity results in a notable decrease in the area with low heat transfer efficiency and a substantial increase in the Nusselt number.

Funder

national science and technology major projects of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3