Ultra-Short-Term Wind Power Prediction Based on the ZS-DT-PatchTST Combined Model

Author:

Gao Yanlong1,Xing Feng1ORCID,Kang Lipeng1,Zhang Mingming2,Qin Caiyan2

Affiliation:

1. School of Electrical Engineering, Liaoning University of Technology, Jinzhou 121001, China

2. School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China

Abstract

When using point-by-point data input with former series models for wind power prediction, the prediction accuracy decreases due to data distribution shifts and the inability to extract local information. To address these issues, this paper proposes an ultra-short-term wind power prediction model based on the Z-score (ZS), Dish-TS (DT), and Patch time series Transformer (PatchTST). Firstly, to reduce the impact of data distribution shift on prediction accuracy, ZS standardization is applied to both training and testing datasets. Additionally, the DT algorithm, which can self-learn the mean and variance, is introduced for window data standardization. Secondly, the PatchTST model is employed to convert point input data into local-level input data. Feature extraction is then performed using the multi-head attention mechanism in the Encoder layer and a feed-forward network composed of one-dimensional convolution to obtain the prediction results. These results are subsequently de-standardized using DT and ZS to restore the original data amplitude. Finally, experimental analysis is conducted, comparing the proposed ZS-DT-PatchTST model with various prediction models. The proposed model achieves the highest prediction accuracy, with a mean absolute error of 5.95 MW, a mean squared error of 10.89 MW, and a coefficient of determination of 97.38%.

Funder

The Stable Funding Support for Universities in Shenzhen

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3