Real-Time Impedance Detection for PEM Fuel Cell Based on TAB Converter Voltage Perturbation

Author:

Zhou Jialong12,Jiang Jinhai12ORCID,Fan Fulin1ORCID,Sun Chuanyu12ORCID,Dong Zhen123,Song Kai124ORCID

Affiliation:

1. School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin 150001, China

2. Suzhou Research Institute, Harbin Institute of Technology, Suzhou 215104, China

3. Suzhou Suyu Technology Co., Ltd., Suzhou 215200, China

4. State Key Laboratory of Hydro-Power Equipment, Harbin Institute of Technology, Harbin 150001, China

Abstract

Fuel cells, as clean and efficient energy conversion devices, hold great potential for applications in the fields of hydrogen-based transportation and stand-alone power systems. Due to their sensitivity to load parameters, environmental parameters, and gas supply, the performance monitoring and fault diagnosis of fuel cell systems have become crucial research areas. Electrochemical impedance spectroscopy (EIS) is a widely applied analytical method in fuel cell systems. that can provide rich information about dynamic system responses, internal impedance, and transmission characteristics. Currently, EIS detection is primarily implemented by using simple topologies such as boost circuits. However, the injection of excitation signals often results in significant power fluctuations, leading to issues such as uneven temperature distributions within the cell, unstable gas supply, and damage to the proton exchange membrane. To address this issue, this paper proposes a real-time EIS detection technique for a proton exchange membrane fuel cell (PEMFC) system that connects a lithium-ion battery and injects the load voltage perturbation through a triple active bridge (TAB) converter. By applying the small-signal model of the TAB converter and designing a system controller using a decoupling control method, the PEMFC power remains stable after the disturbance injection across the entire frequency range under tests. Furthermore, the lithium-ion battery can instantly track load changes during fluctuations. The proposed EIS detection method can acquire EIS data in real time to monitor the state of the PEMFC. Simulation results validate the effectiveness and accuracy of the proposed method for EIS detection.

Funder

China Southern Power Grid Company

Special Fund for Basic Scientific Research Business of Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3