Vehicular Localization Enhancement via Consensus

Author:

Kim Hong KiORCID,Kim MinjiORCID,Lee Sang HyunORCID

Abstract

This paper presents a strategy to cooperatively enhance the vehicular localization in vehicle-to-everything (V2X) networks by exchanges and updates of local data in a consensus-based manner. Where each vehicle in the network can obtain its location estimate despite its possible inaccuracy, the proposed strategy takes advantage of the abundance of the local estimates to improve the overall accuracy. During the execution of the strategy, vehicles exchange each other’s inter-vehicular relationship pertaining to measured distances and angles in order to update their own estimates. The iteration of the update rules leads to averaging out the measurement errors within the network, resulting in all vehicles’ localization error to retain similar magnitudes and orientations with respect to the ground truth locations. Furthermore, the estimate error of the anchor—the vehicle with the most reliable localization performance—is temporarily aggravated through the iteration. Such circumstances are exploited to simultaneously counteract the estimate errors and effectively improve the localization performance. Simulated experiments are conducted in order to observe the nature and its effects of the operations. The outcomes of the experiments and analysis of the protocol suggest that the presented technique successfully enhances the localization performances, while making additional insights regarding performance according to environmental changes and different implementation techniques.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing Node Communication in Vehicle-to-Vehicle Networks: A Relay Selection Algorithm Based on Multi-Metric Consensus Parameters;2024 International Conference on Science, Engineering and Business for Driving Sustainable Development Goals (SEB4SDG);2024-04-02

2. AoA-Based Position and Orientation Estimation Using Lens MIMO in Cooperative Vehicle-to-Vehicle Systems;IEEE Journal on Selected Areas in Communications;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3