Abstract
Strain-induced martensite transformation (SIMT) commonly exists around a crack tip of metastable austenite stainless steels. The influence of the volume expansion of the SIMT on the hydrogen diffusion was investigated by hydrogen diffusion modeling around a crack tip in type 304L austenite stainless steel. The volume expansion changed the tensile stress state into pressure stress state at the crack tip, resulting in a large stress gradient along the crack propagation direction. Compared to the analysis without considering the volume expansion effect, this volume expansion further accelerated the hydrogen transport from the inner surface to a critical region ahead of the crack tip, and further increased the maximum value of the hydrogen concentration at the critical position where the strain-induced martensite fraction approximates to 0.1, indicating that the volume expansion of the SIMT further increased the hydrogen embrittlement susceptibility.
Funder
State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献