Abstract
In order to promote the development of ultra-supercritical technology, the optimum composition design of three new alumina-forming austenitic heat-resistant steels, based on Fe–22Cr–25Ni (wt. %), with low cost and excellent performance, and used for 700 °C ultra-supercritical unit was carried out using Thermo-Calc software. A comparison of the mechanical properties presented that with increasing Al content, the plasticity of the system was further improved. Based on the composition system, a systematic investigation regarding the structure stability, thermodynamic properties, and mechanical properties of these new steels was carried out to reveal possible strengthening and toughening mechanisms by employing the first-principles method. Calculation results showed that when Al existed in the Fe–Cr–Ni alloy system as a solid solution, the new structures were stable, especially under high temperature. The solution of Al and Al + Si could increase the value of B/G, namely improving the plasticity of the system, particularly in case of alloying with Al + Si. The inclusion of Si in the Fe–Cr–Ni–Al system was conducive to further improving the plasticity without affecting the strength, which provided references for the subsequent optimum composition design and performance regulation of alumina-forming austenitic heat-resistant steels.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanxi province
the Graduate Education Innovation Project of Shanxi Province
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献