Predicting the Electrical Energy Consumption of Electric Arc Furnaces Using Statistical Modeling

Author:

Carlsson Leo S.,Samuelsson Peter B.,Jönsson Pär G.

Abstract

Statistical modeling, also known as machine learning, has gained increased attention in part due to the Industry 4.0 development. However, a review of the statistical models within the scope of steel processes has not previously been conducted. This paper reviews available statistical models in the literature predicting the Electrical Energy (EE) consumption of the Electric Arc Furnace (EAF). The aim was to structure published data and to bring clarity to the subject in light of challenges and considerations that are imposed by statistical models. These include data complexity and data treatment, model validation and error reporting, choice of input variables, and model transparency with respect to process metallurgy. A majority of the models are never tested on future heats, which essentially renders the models useless in a practical industrial setting. In addition, nonlinear models outperform linear models but lack transparency with regards to which input variables are influencing the EE consumption prediction. Some input variables that heavily influence the EE consumption are rarely used in the models. The scrap composition and additive materials are two such examples. These observed shortcomings have to be correctly addressed in future research applying statistical modeling on steel processes. Lastly, the paper provides three key recommendations for future research applying statistical modeling on steel processes.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference59 articles.

1. Steel Statistical Yearbook 2018https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html

2. Review of Modeling and Simulation of the Electric Arc Furnace (EAF);Odenthal;Steel Res. Int.,2018

3. Dynamic optimization of electric arc furnace operation

4. Energy Optimization of Steel in Electric Arc Furnace;Ledesma-Carrión;Glob. J. Technol. Optim.,2016

5. Optimization of Primary Steelmaking Purchasing and Operation under Raw Material Uncertainty

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3