Extension of LoRa Coverage and Integration of an Unsupervised Anomaly Detection Algorithm in an IoT Water Quality Monitoring System

Author:

Jáquez Armando Daniel Blanco1,Herrera María T. Alarcon1ORCID,Celestino Ana Elizabeth Marín2ORCID,Ramírez Efraín Neri3,Cruz Diego Armando Martínez4ORCID

Affiliation:

1. Centro de Investigación en Materiales Avanzados, Departamento de Ingeniería Sustentable, Calle CIMAV 110, Ejido Arroyo Seco, Durango 34147, Mexico

2. CONACYT-Instituto Potosino de Investigación Científica y Tecnológica, A.C. División de Geociencias Aplicadas, Camino a la Presa San José 2055, Col. Lomas 4ta Sección, San Luis Potosí 78216, Mexico

3. Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas (UAT), Centro Universitario Victoria, Adolfo López Mateos S/N, Ciudad Victoria 87120, Mexico

4. CONACYT-Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Ejido Arroyo Seco, Col. 15 de Mayo, Durango 34147, Mexico

Abstract

High cost, long-range communication, and anomaly detection issues are associated with IoT systems in water quality monitoring. Therefore, this work proposes a prototype for a water quality monitoring system (IoT-WQMS) based on IoT technologies, which include in the system architecture a LoRa repeater and an anomaly detection algorithm. The system performs the data collection, data storage, anomaly detection, and alarm sending remotely and in real-time for the information to be captured by the multisensor node. The LoRa repeater allowed the spatial coverage of the LoRa communication to extend, making it possible to reach a place where originally there was no coverage with a single LoRa transmitter due to topography and line of sight. The prototype performed well in terms of packet loss rate, transmission time, and sensitivity, extending the long-range wireless communication distance. Indoor multinode testing validation for 29 days of the mean absolute error for average relative errors of water temperature, pH, turbidity, and total dissolved solids (TDS) were 0.65%, 0.30%, and 14.33%, respectively. The anomaly detector identified all erroneous data events due to node sensor recalibration and water recirculation pump failures. The IoT-WQMS increased the reliability of monitoring through the timely identification of any sensor malfunctions and extended the LoRa signal range, which are relevant features in the scope of in situ and real-time water quality monitoring.

Funder

Council for Science and Technology of the State of Durango

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3