Using Multi-Source Data to Assess the Hydrologic Alteration and Extremes under a Changing Environment in the Yalong River Basin

Author:

He Yanfeng12,Xiong Jinghua1,Guo Shenglian1ORCID,Zhong Sirui1,Yu Chuntao2,Ma Shungang2

Affiliation:

1. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

2. Power China Chengdu Engineering Corporation Limited, Chengdu 611130, China

Abstract

Climate change and human activities are two important factors in the changing environment that affect the variability of the hydrological cycle and river regime in the Yalong River basin. This paper analyzed the hydrological alteration and extremes in the Yalong River basin based on multi-source satellite data, and projected the hydrological response under different future climate change scenarios using the CwatM hydrological model. The results show that: (1) The overall change in hydrological alteration at Tongzilin station was moderate during the period of 1998–2011 and severe during the period of 2012–2020. (2) Precipitation (average 781 mm/a) is the dominant factor of water cycle on a monthly scale, which can explain the temporal variability of runoff, evaporation, and terrestrial water storage, while terrestrial water storage is also simultaneously regulated by runoff and evaporation. (3) The GRACE data are comparable with regional water resource bulletins. The terrestrial water storage is mainly regulated by surface water (average 1062 × 108 m3), while the contribution of groundwater (average 298 × 108 m3) is relatively small. (4) The evaporation and runoff processes will intensify in the future due to climate warming and increasing precipitation (~10%), and terrestrial water storage will be depleted. The magnitude of change will increase with the enhancement of emission scenarios.

Funder

National Key Research and Development Plan

Power China Chengdu Engineering Corporation Limited

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3