Distribution-Dependent Weighted Union Bound

Author:

Oneto LucaORCID,Ridella Sandro

Abstract

In this paper, we deal with the classical Statistical Learning Theory’s problem of bounding, with high probability, the true risk R(h) of a hypothesis h chosen from a set H of m hypotheses. The Union Bound (UB) allows one to state that PLR^(h),δqh≤R(h)≤UR^(h),δph≥1−δ where R^(h) is the empirical errors, if it is possible to prove that P{R(h)≥L(R^(h),δ)}≥1−δ and P{R(h)≤U(R^(h),δ)}≥1−δ, when h, qh, and ph are chosen before seeing the data such that qh,ph∈[0,1] and ∑h∈H(qh+ph)=1. If no a priori information is available qh and ph are set to 12m, namely equally distributed. This approach gives poor results since, as a matter of fact, a learning procedure targets just particular hypotheses, namely hypotheses with small empirical error, disregarding the others. In this work we set the qh and ph in a distribution-dependent way increasing the probability of being chosen to function with small true risk. We will call this proposal Distribution-Dependent Weighted UB (DDWUB) and we will retrieve the sufficient conditions on the choice of qh and ph that state that DDWUB outperforms or, in the worst case, degenerates into UB. Furthermore, theoretical and numerical results will show the applicability, the validity, and the potentiality of DDWUB.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference35 articles.

1. An Introduction to Computational Learning Theory;Kearns,1994

2. Statistical Learning Theory;Vapnik,1998

3. The Elements of Statistical Learning;Friedman,2001

4. Understanding Machine Learning: From Theory to Algorithms;Shalev-Shwartz,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3