GHOST—Gate to Hybrid Optimization of Structural Topologies

Author:

Bochenek Bogdan,Tajs-Zielińska KatarzynaORCID

Abstract

Although well-recognized in the fields of structural and material design and widely present in engineering literature, topology optimization still arouses a high interest within research communities. Moreover, it is observed that the development of innovative, efficient and versatile methods is one of the most important issues stimulating progress within the topology optimization area. Following this activity, in the present study, a concept of a hybrid algorithm developed in order to generate optimal structural topologies of minimal compliance is presented. The hybrid algorithm is built based on two existing approaches. The first one makes use of the formal optimality criterion, whereas the second one utilizes a special heuristic rule of design variables updating. The main idea that stands behind the concept of the present proposal is to take the advantage of both algorithms capabilities. In a numerical implementation of the hybrid algorithm, the design variables are updated at each iteration step using both approaches, and the solution with a lower objective function value is selected for the next iteration. The numerical tests of the generation of minimal compliance structures have been performed for chosen structures including a real engineering one. It has been confirmed that the proposed hybrid technique based on switching between the considered rules allows the final structures having lower values of compliance as compared with the results of an application of basic algorithms running separately to be obtained. Moreover, based on promising results of the tests performed, one can consider the proposed concept of a hybrid algorithm as an alternative for other existing topology generators.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3