Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection

Author:

Drobiec Łukasz,Jasiński Radosław,Mazur WojciechORCID

Abstract

This article presents results from non-destructive testing (NDT) that referred to the location and diameter or rebars in beam and slab members. The aim of paper was to demonstrate that the accuracy and deviations of the NDT methods could be higher than the allowable execution or standard deviations. Tests were conducted on autoclaved aerated concrete beam and nine specimens that were specially prepared from lightweight concrete. The most advanced instruments that were available on the market were used to perform tests. They included two electromagnetic scanners and one ground penetrating radar (GPR). The testing equipment was used to analyse how the rebar (cover) location affected the detection of their diameters and how their mutual spacing influenced the detected quantity of rebars. The considerations included the impact of rebar depth on cover measurements and the spread of obtained results. Tests indicated that the measurement error was clearly greater when the rebars were located at very low or high depths. It could lead to the improper interpretation of test results, and consequently to the incorrect estimation of the structure safety based on the design resistance analysis. Electromagnetic and radar devices were unreliable while detecting the reinforcement of small (8 and 10 mm) diameters at close spacing (up to 20 mm) and of large (20 mm) diameters at a close spacing and greater depths. Recommendations for practical applications were developed to facilitate the evaluation of a structure.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Handbook on Nondestructive Testing of Concrete;Malhorta,2004

2. Testing of Concrete in Structures;Bungey,2006

3. Diagnostic Testing of Reinforced Concrete Structures;Drobiec,2013

4. State-of-the-art non-destructive methods for diagnostic testing of building structures – anticipated development trends

5. Diagnosis of Industrial Structures;Drobiec,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3