Author:
Li Xiaohong,He Jianchao,Zhang Tiancang,Tao Jun,Li Ju,Zhang Yanhua
Abstract
Heat treatment at different temperatures was carried out on a Ti3Al linear friction welding joint. The characteristics and evolution of the microstructure in the weld zone (WZ) and the thermo-mechanically affected zone (TMAZ) of the Ti3Al LFW joint were analyzed. Combined with the heat treatment after welding, the effect of the heat treatment temperature on the joint was discussed. The test results indicated that the linear friction welding (LFW) process can accomplish a reliable connection between Ti3Al alloys and the joint can avoid defects such as microcracks and voids. The weld zone of the as-welded Ti3Al alloy joint was mainly composed of metastable β phase, while the TMAZ was mainly composed of deformed α2 phase and metastable β phase. After being heat treated at different temperatures, the WZ of the Ti3Al LFW joint exhibited a significantly different microstructure. After heat treatment at 700 °C, dot-like structures precipitated and the joint microhardness increased significantly. Subsequently, the joint microhardness decreases with the increase in temperature. Under heat treatment at temperatures above 850 °C, the formed structure was acicular α2 phase and the joint microhardness after heat treatment was lower than that of the as-welded joint.
Subject
General Materials Science
Reference33 articles.
1. Research and applicatopn of Ti3Al and Ti2AlNb based alloys;Zhang;Chin. J. Nonferrous Met.,2010
2. Synthesis, properties and applications of titanium aluminides
3. An overview of monolithic titanium aluminides based on Ti3Al and TiAl
4. Development of Intermetallic Compound in Ni-Al, Fe-Al and Ti3Al Base System;Peng;Spec. Cast. Nonferrous Alloy.,2001
5. Structure and Crack Forming Susceptibility of TiAl Based Alloy Joints by Electron Beam Welding;Wu;J. Mater. Eng.,2005
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献