Abstract
The purpose of this study is to improve the performance of walls under out-of-plane loads especially when subjected to the hammering action of the floors. The idea behind the paper is to provide the masonry walls with a device that behaves like a buttress, without having to build a traditional buttress. The solution presented in this paper consists of a mechanical coupling between the three-dimensional net of steel ribbons of the CAM (Active Confinement of Masonry) system and the CFRP (Carbon Fiber Reinforced Polymer) strips. Since the steel ribbons of the CAM system have a pre-tension, the mechanical coupling allows the steel ribbons to establish a semi-rigid transverse link between the CFRP strips bonded on the two opposite sides of a wall. Therefore, two vertical CFRP strips tied by the steel ribbons behave like the flanges of an I-beam and the flexural strength of the ideal I-beam counteracts the out-of-plane displacements of the wall. The experimental results showed that the combined technique inherits the strong points of both constituent techniques. In fact, the delamination load is comparable to that of the specimens reinforced with the CFRP strips and the overall behavior is as ductile as for the specimens reinforced with the CAM system. They also inspired a more performing combined technique.
Subject
General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献