Author:
Yan Xin,Ning Guotao,Wang Xiaofeng,Ai Tao,Zhao Peng,Wang Zhenjun
Abstract
Aged asphalt can enormously affect the performance of asphalt pavement and cause serious environmental hazards. Microcapsule-modified asphalt is one of the effective means to improve the anti-aging ability of asphalt. In this work, novel sustained-release microcapsules containing rejuvenator were prepared by the solvent evaporation method. The morphology of the microcapsules was characterized by scanning electron microscopy (SEM). The sustained-release properties of the microcapsules were investigated by static thermogravimetric analysis. The physical properties such as penetration, ductility, softening point, and Brookfield viscosity of the original asphalt and microcapsule-modified asphalt were studied. In addition, the viscoelasticity of the original asphalt and microcapsule-modified asphalt was investigated by means of a dynamic shear rheometer (DSR). The results show that the prepared microcapsules have a smooth surface and a complete encapsulation with an average particle size of 60 μm. After the heating treatment (above 140 °C), a large number of micropores were formed on the shell surface of microcapsules, which provided a structural basis for the sustained-release of rejuvenator. The release rate of the rejuvenator was obviously slowed down by the microcapsules. The aging behavior of sustained-release microcapsules containing rejuvenator-modified asphalt can be greatly improved. The enhanced anti-aging properties of sustained-release microcapsule-modified asphalt are attributed to the functions of the rejuvenator which can be slowly released from the micropores on the microcapsules’ surface, after which the light components lost in the original asphalt can be supplemented.
Subject
General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献