Abstract
Conventional imaging methods could not distinguish processes within the ventral and dorsal streams. The application of Fourier time series analysis was helpful to segregate changes in the ventral and dorsal streams of the visual system in male and female mice. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in the mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) during light stimulation with blue and yellow filters, compared to during conditions of darkness. Fourier analysis was performed using mean standardized uptake values (SUV) of [18F]FDG for each stimulus condition to derive spectral density estimates for each condition. In male mice, luminance opponency occurred by S-peak changes in the sub-cortical retino-geniculate pathways in the dorsal stream supplied by ganglionic arteries in the left visual cortex, while chromatic opponency involved C-peak changes in the cortico-subcortical pathways in the ventral stream perfused by cortical arteries in the left visual cortex. In female mice, there was resonance phenomenon at C-peak in the ventral stream perfused by the cortical arteries in the right visual cortex during luminance processing. Conversely, chromatic opponency caused by S-peak changes in the subcortical retino-geniculate pathways in the dorsal stream supplied by the ganglionic arteries in the right visual cortex. In conclusion, Fourier time series analysis uncovered distinct mechanisms of color processing in the ventral stream in males, while in female mice color processing was in the dorsal stream. It demonstrated that computation of colour processing as a conscious experience could have a wide range of applications in neuroscience, artificial intelligence and quantum mechanics.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献