A Hybrid Method for the Run-Of-The-River Hydroelectric Power Plant Energy Forecast: HYPE Hydrological Model and Neural Network

Author:

Ogliari EmanueleORCID,Nespoli AlfredoORCID,Mussetta MarcoORCID,Pretto SilviaORCID,Zimbardo Andrea,Bonfanti Nicholas,Aufiero ManueleORCID

Abstract

The increasing penetration of non-programmable renewable energy sources (RES) is enforcing the need for accurate power production forecasts. In the category of hydroelectric plants, Run of the River (RoR) plants belong to the class of non-programmable RES. Data-driven models are nowadays the most widely adopted methodologies in hydropower forecast. Among all, the Artificial Neural Network (ANN) proved to be highly successful in production forecast. Widely adopted and equally important for hydropower generation forecast is the HYdrological Predictions for the Environment (HYPE), a semi-distributed hydrological Rainfall–Runoff model. A novel hybrid method, providing HYPE sub-basins flow computation as input to an ANN, is here introduced and tested both with and without the adoption of a decomposition approach. In the former case, two ANNs are trained to forecast the trend and the residual of the production, respectively, to be then summed up to the previously extracted seasonality component and get the power forecast. These results have been compared to those obtained from the adoption of a ANN with rainfalls in input, again with and without decomposition approach. The methods have been assessed by forecasting the Run-of-the-River hydroelectric power plant energy for the year 2017. Besides, the forecasts of 15 power plants output have been fairly compared in order to identify the most accurate forecasting technique. The here proposed hybrid method (HYPE and ANN) has shown to be the most accurate in all the considered study cases.

Publisher

MDPI AG

Reference43 articles.

1. World Energy Resources: Charting the Upsurge in Hydropower Development;Mo,2015

2. Global Perspectives on Loss of Human Life Caused by Floods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3