Forecasting the Traffic Flow by Using ARIMA and LSTM Models: Case of Muhima Junction

Author:

Katambire Vienna N.1ORCID,Musabe Richard2ORCID,Uwitonze Alfred1,Mukanyiligira Didacienne3ORCID

Affiliation:

1. African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda, Kigali P.O. Box 3900, Rwanda

2. Rwanda Polytechnic, Kigali P.O. Box 164, Rwanda

3. National Council for Science and Technology, Kigali P.O. Box 2285, Rwanda

Abstract

Traffic operation efficiency is greatly impacted by the increase in travel demand and the increase in vehicle ownership. The continued increase in traffic demand has rendered the importance of controlling traffic, especially at intersections. In general, the inefficiency of traffic scheduling leads to traffic congestion, resulting in a rise in fuel consumption, exhaust emissions, and poor quality of service. Various methods for time series forecasting have been proposed for adaptive and remote traffic control. The prediction of traffic has attracted profound attention for improving the reliability and efficiency of traffic flow scheduling while reducing congestion. Therefore, in this work, we studied the problem of the current traffic situation at Muhima Junction one of the busiest junctions in Kigali city. Future traffic rates were forecasted by employing long short-term memory (LSTM) and autoregressive integrated moving average (ARIMA) models, respectively. Both the models’ performance criteria for adequacy were the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean squared error (RMSE). The results revealed that LSTM is the best-fitting model for monthly traffic flow prediction. Within this analysis, we proposed an adaptive traffic flow prediction that builds on the features of vehicle-to-infrastructure communication and the Internet of Things (IoT) to control traffic while enhancing the quality of service at the junctions. The real-time actuation of traffic-responsive signal control can be assured when real-time traffic-based signal actuation is reliable.

Funder

African Center of Excellence in Internet of Things (ACEIoT), College of Science and Technology, University of Rwanda

Publisher

MDPI AG

Subject

Decision Sciences (miscellaneous),Computational Theory and Mathematics,Computer Science Applications,Economics, Econometrics and Finance (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3