Author:
Lee Haksu,Shen Haojing,Seo Dong-Jun
Abstract
When there exist catchment-wide biases in the distributed hydrologic model states, state updating based on streamflow assimilation at the catchment outlet tends to over- and under-adjust model states close to and away from the outlet, respectively. This is due to the greater sensitivity of the simulated outlet flow to the model states that are located more closely to the outlet in the hydraulic sense, and the subsequent overcompensation of the states in the more influential grid boxes to make up for the larger scale bias. In this work, we describe Mean Field Bias (MFB)-aware variational (VAR) assimilation, or MVAR, to address the above. MVAR performs bi-scale state updating of the distributed hydrologic model using streamflow observations in which MFB in the model states are first corrected at the catchment scale before the resulting states are adjusted at the grid box scale. We comparatively evaluate MVAR with conventional VAR based on streamflow assimilation into the distributed Sacramento Soil Moisture Accounting model for a headwater catchment. Compared to VAR, MVAR adjusts model states at remote cells by larger margins and reduces the Mean Squared Error of streamflow analysis by 2–8% at the outlet Tiff City, and by 1–10% at the interior location Lanagan.
Reference47 articles.
1. Real time forecasting of river flows. R. M. Parsons laboratory for water resources and hydrodynamics;Kitanidis;Tech. Rep.,1978
2. Simulated Real-Time Intercomparison of Hydrological Models. Operational Hydrology Rep. 38,1992
3. On improved hydrologic forecasting — Results from a WMO real-time forecasting experiment
4. Validation and Intercomparison of Different Updating Procedures for Real-Time Forecasting
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献