Deep Survival Models Can Improve Long-Term Mortality Risk Estimates from Chest Radiographs

Author:

Liu Mingzhu1ORCID,Nagpal Chirag1,Dubrawski Artur1ORCID

Affiliation:

1. Auton Laboratory, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

Deep learning has recently demonstrated the ability to predict long-term patient risk and its stratification when trained on imaging data such as chest radiographs. However, existing methods formulate estimating patient risk as a binary classification, typically ignoring or limiting the use of temporal information, and not accounting for the loss of patient follow-up, which reduces the fidelity of estimation and limits the prediction to a certain time horizon. In this paper, we demonstrate that deep survival and time-to-event prediction models can outperform binary classifiers at predicting mortality and risk of adverse health events. In our study, deep survival models were trained to predict risk scores from chest radiographs and patient demographic information in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial (25,433 patient data points used in this paper) for 2-, 5-, and 10-year time horizons. Binary classification models that predict mortality at these time horizons were built as baselines. Compared to the considered alternative, deep survival models improve the Brier score (5-year: 0.0455 [95% CI, 0.0427–0.0482] vs. 0.0555 [95% CI, (0.0535–0.0575)], p < 0.05) and expected calibration error (ECE) (5-year: 0.0110 [95% CI, 0.0080–0.0141] vs. 0.0747 [95% CI, 0.0718–0.0776], p < 0.05) for those fixed time horizons and are able to generate predictions for any time horizon, without the need to retrain the models. Our study suggests that deep survival analysis tools can outperform binary classification in terms of both discriminative performance and calibration, offering a potentially plausible solution for forecasting risk in clinical practice.

Funder

Defense Advanced Research Projects Agency

NASA’s Space Technology Research Grants Program

Publisher

MDPI AG

Reference35 articles.

1. Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press.

2. Comparison of Deep Learning Approaches for Multi-Label Chest X-ray Classification;Baltruschat;Sci. Rep.,2019

3. CheXaid: Deep Learning Assistance for Physician Diagnosis of Tuberculosis Using Chest x-Rays in Patients with HIV;Rajpurkar;NPJ Digit. Med.,2020

4. Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C., and Shpanskaya, K. (2017). CheXNet: Radiologist-Level Pneumonia Detection on Chest X-rays with Deep Learning. arXiv.

5. Rajpurkar, P., Irvin, J., Ball, R.L., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., and Langlotz, C.P. (2018). Deep Learning for Chest Radiograph Diagnosis: A Retrospective Comparison of the CheXNeXt Algorithm to Practicing Radiologists. PloS Med., 15.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3