Short-Term Probabilistic Load Forecasting in University Buildings by Means of Artificial Neural Networks

Author:

Seefoo Jarquin Carla Sahori1,Gandelli Alessandro1ORCID,Grimaccia Francesco1ORCID,Mussetta Marco1ORCID

Affiliation:

1. Department of Energy, Politecnico di Milano, 20133 Milan, Italy

Abstract

Understanding how, why and when energy consumption changes provides a tool for decision makers throughout the power networks. Thus, energy forecasting provides a great service. This research proposes a probabilistic approach to capture the five inherent dimensions of a forecast: three dimensions in space, time and probability. The forecasts are generated through different models based on artificial neural networks as a post-treatment of point forecasts based on shallow artificial neural networks, creating a dynamic ensemble. The singular value decomposition (SVD) technique is then used herein to generate temperature scenarios and project different futures for the probabilistic forecast. In additional to meteorological conditions, time and recency effects were considered as predictor variables. Buildings that are part of a university campus are used as a case study. Though this methodology was applied to energy demand forecasts in buildings alone, it can easily be extended to energy communities as well.

Funder

National Recovery and Resilience Plan

European Union—NextGenerationEU

Publisher

MDPI AG

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3