A Markov Switching Autoregressive Model with Time-Varying Parameters

Author:

Inayati Syarifah12ORCID,Iriawan Nur1,Irhamah 1

Affiliation:

1. Department of Statistics, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia

2. Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Yogyakarta, Yogyakarta 55281, Indonesia

Abstract

This study showcased the Markov switching autoregressive model with time-varying parameters (MSAR-TVP) for modeling nonlinear time series with structural changes. This model enhances the MSAR framework by allowing dynamic parameter adjustments over time. Parameter estimation uses maximum likelihood estimation (MLE) enhanced by the Kim filter, which integrates the Kalman filter, Hamilton filter, and Kim collapsing, further refined by the Nelder–Mead optimization technique. The model was evaluated using U.S. real gross national product (GNP) data in both in-sample and out-of-sample contexts, as well as an extended dataset to demonstrate its forecasting effectiveness. The results show that the MSAR-TVP model improves forecasting accuracy, outperforming the traditional MSAR model for real GNP. It consistently excels in forecasting error metrics, achieving lower mean absolute percentage error (MAPE) and mean absolute error (MAE) values, indicating superior predictive precision. The model demonstrated robustness and accuracy in predicting future economic trends, confirming its utility in various forecasting applications. These findings have significant implications for sustainable economic growth, highlighting the importance of advanced forecasting models for informed economic policy and strategic planning.

Publisher

MDPI AG

Reference57 articles.

1. Forecasting Irish Inflation Using ARIMA Models;Meyler;Econ. Anal. Res. Publ. Dep. Cent. Bank Irel.,1998

2. Recurrence Quantification Analysis of Denoised Index Returns via Alpha-Stable Modeling of Wavelet Coefficients: Detecting Switching Volatility Regimes;Tzagkarakis;Stud. Nonlinear Dyn. Econom.,2016

3. A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle;Hamilton;Econometrica,1989

4. Box, G.E.P., and Jenkins, G.M. (1976). Time Series Analysis: Forecasting and Control, Holden-Day.

5. Adebiyi, A.A., Adewumi, A.O., and Ayo, K.A. (2014, January 26–28). Stock Price Prediction Using the ARIMA Model. Proceedings of the 2014 UKSim-AMSS 16th International Conference on Computer Modelling and Simulation, Cambridge, UK.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3