Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg

Author:

Fantazzini DeanORCID,Pushchelenko Julia,Mironenkov Alexey,Kurbatskii AlexeyORCID

Abstract

This paper examines the suitability of Google Trends data for the modeling and forecasting of interregional migration in Russia. Monthly migration data, search volume data, and macro variables are used with a set of univariate and multivariate models to study the migration data of the two Russian cities with the largest migration inflows: Moscow and Saint Petersburg. The empirical analysis does not provide evidence that the more people search online, the more likely they are to relocate to other regions. However, the inclusion of Google Trends data in a model improves the forecasting of the migration flows, because the forecasting errors are lower for models with internet search data than for models without them. These results also hold after a set of robustness checks that consider multivariate models able to deal with potential parameter instability and with a large number of regressors.

Funder

Russian Science Foundation

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3