Fuzzy Clustering Methods to Identify the Epidemiological Situation and Its Changes in European Countries during COVID-19

Author:

Łuczak AleksandraORCID,Kalinowski SławomirORCID

Abstract

The main research question concerned the identification of changes in the COVID-19 epidemiological situation using fuzzy clustering methods. This research used cross-sectional time series data obtained from the European Centre for Disease Prevention and Control. The identification of country types in terms of epidemiological risk was carried out using the fuzzy c-means clustering method. We also used the entropy index to measure the degree of fuzziness in the classification and evaluate the uncertainty of epidemiological states. The proposed approach allowed us to identify countries’ epidemic states. Moreover, it also made it possible to determine the time of transition from one state to another, as well as to observe fluctuations during changes of state. Three COVID-19 epidemic states were identified in Europe, i.e., stabilisation, destabilisation, and expansion. The methodology is universal and can also be useful for other countries, as well as the research results being important for governments, politicians and other policy-makers working to mitigate the effects of the COVID-19 pandemic.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference71 articles.

1. COVID in Developing Economies,2020

2. Coronaphobia: Fear and the 2019-nCoV outbreak

3. Economics in the Time of COVID-19;Baldwin,2020

4. Loneliness during a strict lockdown: Trajectories and predictors during the COVID-19 pandemic in 38,217 United Kingdom adults

5. Siamo in Guerra! Il Coronavirus e le Sue Metafore [We Are at War: The Coronavirus and Its Metaphors] https://www.internazionale.it/opinione/daniele-cassandro/2020/03/22/coronavirus-metafore-guerra?fbclid=IwAR0kZCnNmLZLENFTAPUIFtkq8bqrabqMe-vEoZpQZ6Wig55XdPEWlzdzRkE

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3