Machine Learning Algorithms to Classify and Quantify Multiple Behaviours in Dairy Calves Using a Sensor: Moving beyond Classification in Precision Livestock

Author:

Carslake Charles,Vázquez-Diosdado Jorge A.,Kaler JasmeetORCID

Abstract

Previous research has shown that sensors monitoring lying behaviours and feeding can detect early signs of ill health in calves. There is evidence to suggest that monitoring change in a single behaviour might not be enough for disease prediction. In calves, multiple behaviours such as locomotor play, self-grooming, feeding and activity whilst lying are likely to be informative. However, these behaviours can occur rarely in the real world, which means simply counting behaviours based on the prediction of a classifier can lead to overestimation. Here, we equipped thirteen pre-weaned dairy calves with collar-mounted sensors and monitored their behaviour with video cameras. Behavioural observations were recorded and merged with sensor signals. Features were calculated for 1–10-s windows and an AdaBoost ensemble learning algorithm implemented to classify behaviours. Finally, we developed an adjusted count quantification algorithm to predict the prevalence of locomotor play behaviour on a test dataset with low true prevalence (0.27%). Our algorithm identified locomotor play (99.73% accuracy), self-grooming (98.18% accuracy), ruminating (94.47% accuracy), non-nutritive suckling (94.96% accuracy), nutritive suckling (96.44% accuracy), active lying (90.38% accuracy) and non-active lying (90.38% accuracy). Our results detail recommended sampling frequencies, feature selection and window size. The quantification estimates of locomotor play behaviour were highly correlated with the true prevalence (0.97; p < 0.001) with a total overestimation of 18.97%. This study is the first to implement machine learning approaches for multi-class behaviour identification as well as behaviour quantification in calves. This has potential to contribute towards new insights to evaluate the health and welfare in calves by use of wearable sensors.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3