A Novel Method to Combine Maxilla-Based Coordinate System and Mandibular Voxel-Based Superimposition with Cone-Bean Computed Tomography

Author:

Zhang Chenghao,Ji Ling,Li Yijun,Pan Fangwei,Liao Wen,Zhao Zhihe

Abstract

Background: The objective of this study was to propose a method that combines a maxilla-based coordinate system and mandibular voxel-based superimposition for an accurate evaluation of mandibular structural and positional changes and a direct comparison between maxillary and mandibular structural changes with the same 3D vectors. Methods: Mandibular voxel-based superimposition was firstly performed to reorient the mandibles and eliminate the mandibular positional changes. Then, a maxilla-based coordinate system was constructed with four maxillary skeletal landmarks (ANS, PNS, OrL and OrR). After settling the reoriented mandibles into this coordinate system, the mandibular structural changes were accurately evaluated. To assess the accuracy and reproducibility of this method, CBCT images of a skull specimen before and after orthodontic treatment (which was simulated by rearranging the skull and the mandible) were collected. Five mandibular skeletal landmarks, three mandibular dental landmarks and two mandibular measurement planes of this skull were used to evaluate the linear and angular changes in the mandibular structures. Results: There were significant differences in the linear and angular measurements of the mandibular structures of the skull (p ˂ 0.05), which indicated mandibular positional changes after orthodontic treatment. After mandibular voxel-based superimposition, there were no significant differences in the linear and angular measurements of mandibular structures, which indicated that the mandibular positional changes were eliminated. The intraclass correlation coefficient (ICC) value of the inter- and intra-observer agreement of all measurements was 0.99. Conclusions: This method has proven advantages in terms of accuracy, reproducibility and validity; with this method, mandibular structural and positional changes can be accurately evaluated and maxillary and mandibular structural changes can be directly compared with same 3D vectors.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3