Formal Modeling of IoT-Based Distribution Management System for Smart Grids

Author:

Kousar Shaheen,Zafar Nazir Ahmad,Ali Tariq,Alkhammash Eman H.,Hadjouni Myriam

Abstract

The smart grid is characterized as a power system that integrates real-time measurements, bi-directional communication, a two-way flow of electricity, and evolutionary computation. The power distribution system is a fundamental aspect of the electric power system in order to deliver safe, efficient, reliable, and resilient power to consumers. A distribution management system (DMS) begins with the extension of the Supervisory Control and Data Acquisition (SCADA) system through a transmission network beyond the distribution network. These transmission networks oversee the distribution of energy generated at power plants to consumers via a complex system of transformers, substations, transmission lines, and distribution lines. The major challenges that existing distribution management systems are facing, maintaining constant power loads, user profiles, centralized communication, and the malfunctioning of system equipment and monitoring huge amounts of data of millions of micro-transactions, need to be addressed. Substation feeder protection abruptly shuts down power on the whole feeder in the event of a distribution network malfunction, causing service disruption to numerous end-user clients, including industrial, hospital, commercial, and residential users. Although there are already many traditional systems with the integration of smart things at present, there are few studies of those systems reporting runtime errors during their implementation and real-time use. This paper presents the systematic model of a distribution management system comprised of substations, distribution lines, and smart meters with the integration of Internet-of-Things (IoT), Nondeterministic Finite Automata (NFA), Unified Modeling Language (UML), and formal modeling approaches. Non-deterministic finite automata are used for automating the system procedures. UML is used to represent the actors involved in the distribution management system. Formal methods from the perspective of the Vienna Development Method-Specification Language (VDM-SL) are used for modeling the system. The model will be analyzed using the facilities available in the VDM-SL toolbox.

Funder

Princess Nourah bint Abdulrahman University

Taif University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference41 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3