Numerical Analysis and Experimental Study on Fabrication of High Aspect Ratio Tapered Ultrafine Holes by Over-Growth Electroforming Process

Author:

Zhang Yunyan,Ming Pingmei,Li Runqing,Qin Ge,Zhang Xinmin,Yan Liang,Li Xinchao,Zheng Xingshuai

Abstract

High aspect ratio (HAR) ultrafine tapered holes (diameter ≤5 μm; AR ≥5) are the most important elements for some high-tech perforated metallic products, but they are very difficult to manufacture. Therefore, this paper proposes a nontraditional over-growth electroforming process. The formation mechanism of the HAR ultrafine tapered holes is investigated, and the factors controlling the geometric shape evolution are analyzed numerically. It was found that the geometric shape and dimensions of the holes are highly dependent on the diameter and thickness of the photoresist film patterns, but are hardly affected by the spacing between two neighboring patterns; the achievable diameter for a given hole depth becomes small with the increasing pattern diameter, but it becomes big with the increasing pattern thickness. These correlations can be well interpreted by the established two empirical equations that characterize the relationship between the minimum orifice of the tapered hole and the structural parameters of the photoresist film patterns previously formed on the substrate. Application of the fabricated 1500 tapered holes with 3-μm diameter and 17-AR as the nozzles of the medical precision nebulizer is also examined. The studies show that the over-growth electroforming process is highly applicable in fabricating the perforated metallic plate with HAR ultrafine tapered holes.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3