Abstract
With the rise of nanoscience and nanotechnologies, especially the continuous deepening of research on low-dimensional materials and structures, various kinds of light-emitting devices based on nanometer-structured materials are gradually becoming the natural candidates for the next generation of advanced optoelectronic devices with improved performance through engineering their interface/surface properties. As dimensions of light-emitting devices are scaled down to the nanoscale, the plentitude of their surface/interface properties is one of the key factors for their dominating device performance. In this paper, firstly, the generation, classification, and influence of surface/interface states on nanometer optical devices will be given theoretically. Secondly, the relationship between the surface/interface properties and light-emitting diode device performance will be investigated, and the related physical mechanisms will be revealed by introducing classic examples. Especially, how to improve the performance of light-emitting diodes by using factors such as the surface/interface purification, quantum dots (QDs)-emitting layer, surface ligands, optimization of device architecture, and so on will be summarized. Finally, we explore the main influencing actors of research breakthroughs related to the surface/interface properties on the current and future applications for nanostructured light-emitting devices.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献