Effect of Enhanced Squeezing Needle Structure on the Jetting Performance of a Piezostack-Driven Dispenser

Author:

Huang Xiang,Lin Xiaolong,Jin Hang,Lin Siying,Bu Zhenxiang,He Gonghan,Sun Daoheng,Wang Lingyun

Abstract

Advanced dispensing technology is urgently needed to improve the jetting performance of fluid to meet the requirements of electronic product integration and miniaturization. In this work, an on–off valve piezostack-driven dispenser was used as a study object to investigate the effect of needle structure on jetting performance. Based on fluid dynamics, we investigated nozzle cavity pressure and jet velocity during the dispensing process using theoretical simulation for needles with and without a side cap. The results showed that the needle with a side cap had larger jet velocity and was capable of generating 8.27 MPa of pressure in the nozzle cavity, which was 2.39 times larger than the needle without a side cap. Further research on the influence of the nozzle and needle structural parameters showed that a nozzle conic angle of 85°–105°, needle conic angle of 10°–35°, and side clearance of 0.1–0.3 mm produced a dispenser with a large jet velocity and stable performance, capable of dispensing microscale droplets. Finally, a smaller droplet diameter of 0.42 mm was achieved in experiments using a glycerol/ethanol mixture, with a variation range of ± 4.61%.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On-demand jetting of high-viscosity liquid by jet tube impact;Physics of Fluids;2024-08-01

2. Design and performance analysis of a piezoelectric jetting dispensing valve;Journal of Intelligent Material Systems and Structures;2024-04-17

3. Research on Adhesive Quality Control Based on Piezoelectric Dispensing Valve;IEEE Transactions on Industrial Electronics;2024-01

4. Sealing Design of Piezoelectric Jetting Dispenser and Its Influence on Jetting Performance;IEEE Transactions on Components, Packaging and Manufacturing Technology;2023-12

5. Design and experiment of a new double needle type piezoelectric jetting dispenser;Smart Materials and Structures;2023-02-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3